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Part I: Introduction to the Double Copy

Scattering Amplitudes

Calculable with Feynman diagrams:

3

d d

=

w w

+ + . . .

w w

+ + · · ·
good: general, clear physical picture.

bad: inefficient, symmetries obscured.

Every theoretical physicist who is any good knows
six or seven different theoretical representations

for exactly the same physics.

Modern approaches explore relations between theories, e.g.

gravity vs. gauge theory.

Hidden in usual Lagrangian / equations of motion.
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Part I: Introduction to the Double Copy

Perturbative gravity is hard!
Feynman rules: expand Einstein-Hilbert Lagrangian gµν = ηµν + hµν [DeWitt ‘66]

+ infinite number of higher-point vertices. . .
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Part I: Introduction to the Double Copy

Gravity ∼ (Yang-Mills) 2 in Scattering Amplitudes

Asymptotic states

Yang-Mills theory: gluon Aµ = eik·x εµ T a

colour index a , polarisation εµ has D − 2 dof.

‘Product gravity’: state eik·x εµν , with εµν = εµ ε̃ν or linear comb.

Contains graviton hµν + dilaton Φ + B-field Bµν , (D − 2)2 dof.

Scattering amplitudes

“Factorisation” of εµ, ε̃ ν preserved by interactions!

Double copy Agrav(εµνi ) ∼ (prop)−1 AYM(εµi ) × AYM(ε̃µi )
∣∣
colour stripped

Famous application: supergravity UV behaviour. [Bern,Carrasco,Johansson,Roiban,. . . ]
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Part I: Introduction to the Double Copy

String theory origin

QFT from string theory as α′ = `2
s → 0 : alternative to Feynman expansion.

3

d d

=

w w

+ + . . .

w w

+ + · · ·

3

d d

=

w w

+ + . . .

particle scattering string scattering
(many Feynman diagrams) (one “world-sheet”, 2D CFT)

Gravity (closed strings) vs. gauge theory (open strings):

Asymptotic states (vertex operators): Vclosed(εµν = εµε̃ν) ∼ Vopen(εµ)V̄open(ε̃ν)

Scattering amplitudes:

KLT relations
[Kawai, Lewellen, Tye 86]

Field theory limit: Gravity ∼ (Yang-Mills) 2 (KLT, BCJ, CHY, . . . )
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Part I: Introduction to the Double Copy

Why simpler?

Basic example: 3-pt interactions.

4

Agauge(✏µ) ⇥ Agauge(✏̃µ) ⇠ Agravity("µ⌫ = ✏µ ✏̃⌫)

⇥ ⇠

⇥ ⇠

Gauge theory field Aa
µ

3-pt vertex: f abc Vµνλ Aa
µ(p1) Ab

ν(p2) Ac
λ(p3)

Vµνλ = (p1 − p2)ληµν + (p2 − p3)µηνλ + (p3 − p1)νηλµ

Gravity field Hµµ′ ∼ graviton + dilaton + B-field ‘fat graviton’

3-pt vertex: Vµνλ Vµ′ν′λ′
Hµµ′(p1) Hνν′(p2) Hλλ′(p3)

Great simplification: index factorisation, c.f. ∼100 terms in GR 3-pt vertex!

Powerful implementation: colour-kinematics duality. [Bern, Carrasco, Johansson ‘08] [...]
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Part I: Introduction to the Double Copy

New directions in (classical) perturbative gravity

Generically, double copy applies in perturbation theory.

• Double-copy-like field theory for gravity.
[Bern et al] [Goldberger et al] [Luna et al] [Cheung et al] [Plefka et al] [Borsten et al] [. . . ]

• Gauge-invariant approach: classical physics from scattering amplitudes.
[Neill et al] [Bjerrum-Bohr et al] [Kosower et al] [Di Vecchia et al] [Guevara et al] [Huang et al] [Arkani-Hamed et al] [. . . ]

• Beyond Minkowski: amplitudes on plane wave backgrounds. [Adamo et al] [. . . ]

• Highlight: new G3, G4 (3PM, 4PM) corrections to 2-body potential. [Bern et al]
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Part II: Application to Exact Classical Solutions

Part II

Application to Exact Classical Solutions

⇒⇒ Kerr-Schild DC: vacuum
Kerr-Schild-like DC: DFT
Weyl (Spinorial) DC: vacuum
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Part II: Application to Exact Classical Solutions

Beyond perturbation theory

Question: is a black hole a double copy of something?

Challenges:

What is “graviton” in exact solution?

Non-perturbative double copy?

Still...

Can relate to perturbation theory.

Examples: Schwarzchild [Duff 73; Neill, Rothstein 13], shockwave [Saotome, Akhoury ’12].

Direct map of exact solutions? Need miracle! Symmetry
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Part II: Application to Exact Classical Solutions

Stationary Kerr-Schild spacetimes [RM, O’Connell, White 14]

“Exact perturbation” gµν = ηµν + φ kµkν

where kµ is null and geodesic wrt ηµν and gµν . (kµ = gµνkν = ηµνkν)

Einstein equations linearise:

gµν = ηµν − φ kµkν

Rµ
ν = 1

2∂α [∂µ (φkαkν) + ∂ν (φkαkµ)− ∂α (φkµkν)] ∂µ ≡ ηµν∂ν

Stationary vacuum case (take k0 = 1): R0
0 = 1

2 ∇2φ = 0

R i
0 = 1

2 ∂`
[
∂ i
(
φk`
)
− ∂`

(
φk i
)]

= 0

“Single copy” linear↔ Abelian, Aa
µ = φ kµ ca ca const

0 = DµF aµν = ca
{

−∇2φ ν = 0
−∂`

[
∂ i
(
φk`
)
− ∂`

(
φk i
)]

ν = i
√
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Part II: Application to Exact Classical Solutions

Simplest example: point charge

Check spherically symmetric solutions sourced by point charge.

Einstein theory: Schwarzschild solution

gµν = ηµν + φ kµkν , φ(r) =
2M
r
, k = dt + dr

YM theory: Coulomb solution

Aµ = φ kµ , φ(r) =
q
r

A → A + d(−q log r) =
q
r

dt

Schwarzschild ∼ (Coulomb)2
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Part II: Application to Exact Classical Solutions

Many more examples

Rotation

Kerr black hole: (M, J).

D > 4: Myers-Perry black holes (M, Ji ).
Other black holes families? Black rings, etc...

Cosmological constant ↔ constant charge density. [Luna, RM, O’Connell, White ’15]
[Bahjat-Abbas, Luna, White ’17; Carrillo-Gonzalez, Penco, Trodden 17]

NUT charge ↔ magnetic monopole: multi-Kerr-Schild [Luna, RM, O’Connell, White ’15]

g(Taub-NUT)
µν = ηµν +φ kµkν +ψ `µ`ν , φ ∝ M , ψ ∝ N ⇒ A(dyon)

µ = φ kµ+ψ `µ

Radiation from accelerated particle: correct Bremsstrahlung.
[Luna, RM, Nicholson, O’Connell, White ’16]

Much related work [Adamo et al, Alawadhi et al, Alfonsi et al, Anastasiou et al, Andrzejewski et al, Bah et al,

Bahjat-Abbas et al, Berman et al, Borsten et al, Cardoso et al, Casali et al, Chacon et al, Cho et al, Easson et al, Elor et al,

Emond et al, Goldberger et al, Gonzalez et al, Gurses et al, Keeler et al, Kim et al, Lescano, Luna et al, Cristofoli et al, Godazgar

et al, Ilderton et al, Lee et al, Mafra et al, Mizera et al, Pasarin et al, Pasterski et al, Prabhu, P.V. et al, Sabharwal et al, White, . . . ]
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Part II: Application to Exact Classical Solutions

Part II

Application to Exact Classical Solutions

Kerr-Schild DC: vacuum
⇒⇒ Kerr-Schild-like DC: DFT

Weyl (Spinorial) DC: vacuum
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Part II: Application to Exact Classical Solutions

Beyond vacuum solutions

Simplest example: (Coulomb)2 ∼ Schwarzschild .

But (YM)2 ∼ Einstein hµν + dilaton Φ + B-field Bµν .

Other fields?

Fields conveniently packaged in Double Field Theory.

double copy double field theory

Gravity = YM × YM doubled geometry (xµ, x̃µ)
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Part II: Application to Exact Classical Solutions

Double copy for Coulomb: not unique!

Plane waves: take polarisations εµ , ε̃µ . ε · k = ε̃ · k = 0

Simplest double copy: εµν = εµε̃ν .

ε · q = ε̃ · q = q2 = 0

Why not ε(µε̃ν) , ε[µε̃ν] , ε · ε̃∆µν ? ∆µν = ηµν −
kµqν + kνqµ

k · q
General: graviton + B-field + dilaton.

εµν = C(h)

(
ε(µε̃ν) −

∆µν

D − 2
ε · ε̃
)

+ C(B) ε[µε̃ν] + C(φ) ∆µν

D − 2
ε · ε̃ .

Linearised (Coulomb)2: no B-field, M ∼ C(h) graviton, Y ∼ C(φ) dilaton.

Coordinate space analogue of εµν : ‘fat graviton’.
[Luna, RM, Nicholson, Ochirov, O’Connell, White, Westerberg 16] [Kim, Lee, RM, Nicholson, Veiga 19] [Luna, Nagy, White 20]

But exact solution is known:

• Y = 0: Schwarzschild. • Any Y : JNW [Janis, Newman, Winicour ’68].
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Part II: Application to Exact Classical Solutions

General point charge: JNW solution

Unique static, spherically symmetric, asymp. flat solution
of Einstein + minimally coupled scalar.

Two parameters (M,Y ) or (ρ0, γ). Found by Janis, Newman, Winicour ’68:

ds2 = −
(

1− ρ0

ρ

)γ
dt2 +

(
1− ρ0

ρ

)−γ
dρ2 +

(
1− ρ0

ρ

)1−γ

ρ2dΩ2

φ =
Y
ρ0

log

(
1− ρ0

ρ

)
ρ0 = 2

√
M2 + Y 2 γ =

M√
M2 + Y 2

Y = 0: vacuum gravity → Schwarzschild (usual coords)

Y 6= 0: naked singularity at origin ρ = ρ0, cf. no-hair theorems

Should be general (Coulomb)2. Exact double copy map? Yes, using DFT.

Solution above is in Einstein frame. In string frame, gS
µν = e2φ gE

µν .
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Part II: Application to Exact Classical Solutions

Double Field Theory [Siegel ’93] [Hull, Zwiebach ’09 + Hohm ’10]

For us: fancy formulation of ‘product gravity’ (massless level closed string).

Motivation: low-energy effective theory of closed string exhibiting T-duality.

Doubled space XM = (xµ, x̃µ) , dim = 2D .
(xµ, x̃µ) conjugate to (momenta, winding). Mixed by T-duality.

ΛM
N ∈ O(D,D) : (Λ)T (J )(Λ) = (J ) . JMN =

(
0 δµν
δµ
ν 0

)
is O(D,D) metric.

T-duality manifest: O(D,D) covariance.
Section condition, e.g., ∂/∂x̃µ = 0 : correct dof, breaks covariance.

Fields packaged as tensor and scalar wrt to O(D,D).

Generalised metric: HMN =

(
gµν −gµρBρν

Bµρgρν gµν − BµρgρσBσν

)
.

DFT dilaton d : e−2d =
√−g e−2φ .
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Part II: Application to Exact Classical Solutions

Kerr-Schild-inspired ansatz
Recall Kerr-Schild ansatz: gµν = ηµν + ϕ kµkν kµ null and geodesic.

DFT version: take H0MN = HMN (gµν =ηµν ,Bµν =0) , [Lee 18] [Cho, Lee 19]
[Kim, Lee, RM, Nicholson, Veiga 19]

HMN = H0MN + ϕ
(
KM K̄N + KN K̄M

)
−1

2
ϕ2K̄ 2KMKN

KM =
1√
2

(
kµ

ηµνkν

)
K̄M =

1√
2

(
k̄µ

−ηµν k̄ν

)
where kµ and k̄µ are null and satisfy diff. contraints (or k̄µ not null).

gµν = ηµν +
ϕ

1 + ϕ
2 (k · k̄)

k(µk̄ν) ,

Bµν =
ϕ

1 + ϕ
2 (k · k̄)

k[µk̄ν] .

First examples of exact double copy with dilaton and B-field. [Lee 18]

JNW solution: fits ansatz.
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Part II: Application to Exact Classical Solutions

Double Field Theory versus Double Copy

Generalised metric HM
N induces chirality:

PM
N =

1
2
(
δM

N +HM
N) , P̄M

N =
1
2
(
δM

N −HM
N) .

Project into chiral and anti-chiral sectors

= left and right moving sectors! (pullback to worldsheet)

Kerr-Schild-like ansatz HMN = H0MN + ϕ
(
KM K̄N + KN K̄M

)
+ . . .

Satisfy definite chiralities: (P0)M
NKN = KM , (P̄0)M

N K̄N = K̄M .

Double-copy interpretation: KM  Aµ K̄M  Āµ

KLT picture of Kerr-Schild double copy!
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Part II: Application to Exact Classical Solutions

DFT equations of motion

As in Kerr-Schild double copy, gravity e.o.m.  gauge theory e.o.m.

‘left’ 4e−2d Rµ0 = ∂νFνµ = 0 , F = dA , Aµ = e−2dϕ kµ + Cµ

‘right’ 4e−2d R0µ = ∂ν F̄νµ = 0 , F̄ = dĀ , Āµ = e−2dϕ k̄µ + C̄µ

General relation: Aµ and Āµ independent

Kerr-Schild-like (gµν ,Bµν ,d) ∼ (‘left-moving’ Aµ)× (‘right-moving’ Āµ)

Our example: Aµ = Āµ up to gauge = Coulomb

JNW ∼ (‘left-moving’ Coulomb)× (‘right-moving’ Coulomb)
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Part II: Application to Exact Classical Solutions

Part II

Application to Exact Classical Solutions

Kerr-Schild DC: vacuum
Kerr-Schild-like DC: DFT

⇒⇒ Weyl (Spinorial) DC: vacuum
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Part II: Application to Exact Classical Solutions

Alternative formulation [Luna, RM, Nicholson, O’Connell ’18]

Try double copy of curvatures:

Aµ = εµ eik·x , Fµν = i(kµεν − kνεµ) eik·x

hµν = εµεν eik·x , Rµνρλ =
1
2

(kµεν − kνεµ)(kρελ − kλερ) eik·x

Obvious relation: eik·xRµνρλ ∼ FµνFρλ

More general? Not so simple: symmetries of Rµνρλ, non-linear gauge, . . .

Spinorial approach to GR (D = 4) [Penrose ‘60]

Basic object is σµ
AȦ

such that
(
σµ

AȦ
σνBḂ + σνAȦσ

µ

BḂ

)
εȦḂ = gµνεAB

Translation spacetime indices ↔ spinor indices: Vµ → VAȦ = σµ
AȦ

Vµ.

Want formula: curvature R ∼ 1
scalar

(curvature F )2
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µ

BḂ
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Part II: Application to Exact Classical Solutions

Weyl spinor and algebraic classification
Weyl curvature Wµνρλ:

Wµνρλ = Rµνρλ + terms(Rµν ,gµν) = Rµνρλ in vacuum as Rµν = 0

Weyl spinor CABCD:

Wµνρλ → WAȦBḂCĊDḊ = CABCD εȦḂ εĊḊ + C̄ȦḂĊḊ εAB εCD

where CABCD = C(ABCD) and C̄ȦḂĊḊ is complex conjugate.

Can decompose into four rank 1 spinors: CABCD = a(AbBcCdD)

→ Four principal null directions: aAȦ = aA āȦ and same for bAȦ, cAȦ,dAȦ.

Algebraic classification of spacetimes [Petrov ‘54]

How many principal null directions are aligned? Types I, II, D, III, N, O.

Type D: aA ∝ cA, bA ∝ dA , then CABCD = y(AB yCD) , where yAB = a(AbB) .
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Can decompose into four rank 1 spinors: CABCD = a(AbBcCdD)

→ Four principal null directions: aAȦ = aA āȦ and same for bAȦ, cAȦ,dAȦ.
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Algebraic classification of spacetimes [Petrov ‘54]

How many principal null directions are aligned? Types I, II, D, III, N, O.

Type D: aA ∝ cA, bA ∝ dA , then CABCD = y(AB yCD) , where yAB = a(AbB) .

Ricardo Monteiro (Queen Mary) Gravity as a Double Copy of Gauge Theory 25 / 34



Part II: Application to Exact Classical Solutions

Weyl double copy: vacuum Type D spacetimes
Take Minkowski space: σa = 1√

2
(1, σi ).

Maxwell spinor fAB: Fab → FAȦBḂ = fAB εȦḂ + f̄ȦḂ εCD

where fAB = f(AB) and f̄ȦḂ is complex conjugate. Also fAB = r(AsB).

‘Weyl double copy’ CABCD =
1
S

f(AB fCD)

Type D solutions: 2 principal null directions of multiplicity 2,
Coulombic, no functional freedom. Eg. Kerr-Taub-NUT.

Matches stationary Kerr-Schild story in d = 4. φ = S + S̄.
Extra: C-metric ↔ Lienard-Weichert potential for uniform acceleration.

Origin: ∃ Killing rank-2 spinor, ∇(A
Ȧ χBC) = 0. [Walker, Penrose 70]

Then CABCD = χ−5 χ(AB χCD) , fAB = χ−3 χAB , S = χ−1 .
Admit complex double-Kerr-Schild form [Plebanski, Demianski 75].

Ricardo Monteiro (Queen Mary) Gravity as a Double Copy of Gauge Theory 26 / 34



Part II: Application to Exact Classical Solutions

Weyl double copy: vacuum Type D spacetimes
Take Minkowski space: σa = 1√

2
(1, σi ).

Maxwell spinor fAB: Fab → FAȦBḂ = fAB εȦḂ + f̄ȦḂ εCD
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Admit complex double-Kerr-Schild form [Plebanski, Demianski 75].
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Take Minkowski space: σa = 1√

2
(1, σi ).

Maxwell spinor fAB: Fab → FAȦBḂ = fAB εȦḂ + f̄ȦḂ εCD
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Part II: Application to Exact Classical Solutions

Weyl double copy: vacuum Type N spacetimes

Type N solutions: 1 principal null direction `µ of multiplicity 4,
gravitational radiation, functional freedom.

@ Killing spinor (only for pp-waves), but still find CABCD =
1
S

f(AB fCD)

Convenient to use spinor basis {oA, ιA} , εAB = oA ιB − oB ιA , `µ → oAōȦ .

Can prove for vacuum sols: [Godazgar2, RM, Peinador, Pope 20]

Weyl tensor is type N ⇔⇔ ∃∃ degenerate Maxwell field
CABCD = Ψ4 oAoBoCoD fAB = Φ2 oAoB

such that Ψ4 =
1
S

(Φ2)2 with �S = 0

Non-uniqueness due to functional freedom in S.
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Part II: Application to Exact Classical Solutions

Weyl double copy: vacuum Type N spacetimes

Weyl tensor is type N ⇔⇔ ∃∃ degenerate Maxwell field
CABCD = Ψ4 oAoBoCoD fAB = Φ2 oAoB

such that Ψ4 =
1
S

(Φ2)2 with �S = 0

Proof: follows from oA∇AȦ T (s) + (2 s oAι
B∇AȦoB − ιAoB∇AȦoB) T (s) = 0

• s = 2,T (2) = Ψ4 : Bianchi identity for Weyl tensor
• s = 1,T (1) = Φ2 : Maxwell equation
• s = 0,T (0) = S : implies scalar wave equation

Φ2 and S satisfy equations on curved background.
Can Φ2 and S also satisfy equations on Minkowski background?
Possible for non-twisting solutions 7→ simple double copy interpretation.

Weyl double copy has twistorial formulation. [White 20]
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Part III: From Scattering Amplitudes to Classical Double Copy

3-point scattering amplitudes

On-shell 3-pt interaction: massive particle emits gauge boson.

p − q

p

q
p2 = (p − q)2 = m2 q2 = 0

3-pt amplitudes are the building blocks of modern on-shell methods.
Eg. BCFW recursion.

Lorentzian signature: 3-pt amplitudes supported on complex kinematics.

Split signature (t1, t2, x1, x2): 3-pt amplitudes supported on real kinematics,
eg, p = m (0,1,0,0) , q ∝ (1,0,0,1) .

Classical limit: q = ~ k , ~→ 0. KMOC formalism [Kosower, Maybe, O’Connell 18]
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Part III: From Scattering Amplitudes to Classical Double Copy

Classical fields from 3-pt amplitudes [RM, O’Connell, Peinador, Sergola 20]

What classical objects do 3-pt amplitudes compute?

⇒ Linearised curvature (gravity) and field strength (EM) in split signature.

KMOC formalism: 〈O〉 ≡ in〈S†OS〉in S = 1 + i T [ eg. O = Fµν(x) ]

calculation−→ 〈O(x) 〉classical = Re
∫

d4k δ(k2) θ(k1) Õ(k)︸ ︷︷ ︸
includes 3-pt amp

e−ik·x

and k2 = 0 : kµ 7→ |k〉A [k |Ȧ , we find for ‘static’ particle

C̃ABCD(k) = |k〉A|k〉B|k〉C |k〉D A(+)
3,grav (k) Schwarzschild∗

f̃AB(k) = |k〉A|k〉B A(+)
3,EM(k) Coulomb∗

S̃(k) = 1 1/r ∗

∗ analytic continuation to split signature
eg, A(+)

3,EM (k) ∼ p · ε(+)(k)
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Part III: From Scattering Amplitudes to Classical Double Copy

Double copy: from amplitudes to classical solutions

Amplitudes

double copy

A(±)
3,grav =

(
A(±)

3,EM

)2

Classical solutions

Weyl double copy
in on-shell momentum space

C̃ABCD =
1
S̃

f̃(AB f̃CD)

Back to coordinate space −→ Schwarzschild ∼ (Coulomb)2

Why simplicity in coordinate space examples? Symmetry!

Expect generic double copy to be non-local in coordinate space. [Anastasiou et al 14]
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Conclusion

Conclusion

Double copy (DC) has proven very useful. [review: Bern et al 1909.01358]

DC of classical solutions possible.

Various approaches exploit algebraic structure, ‘stringy’ aspects, . . .

DC of classical solutions == DC of amplitudes.

Much more to explore

Larger classes of solutions, duality transf., asymptotic symmetries, . . .
[e.g., Godazgar et al, Huang et al, Alawadhi et al, Banerjee et al, Moynihan et al, Berman et al, Campiglia et al]

Generic non-linear classical DC?

Not discussed: colour-kinematics duality, field/string amplitudes, . . .
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